ASTR 1040 Recitation: Compact Objects

Ryan Orvedahl

Department of Astrophysical and Planetary Sciences

March 19 & 20, 2019

Announcements

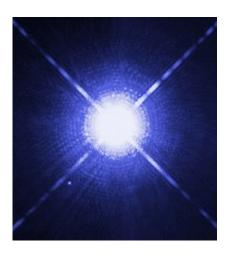
• Last Observing: Wed, Apr 3 (8pm or 9pm at SBO)

White Dwarfs

• $R \sim R_{\oplus}$, $M \sim M_{\odot}$

• No more E generation

• Why don't they collapse?



White Dwarfs

• $R \sim R_{\oplus}$, $M \sim M_{\odot}$

• No more E generation

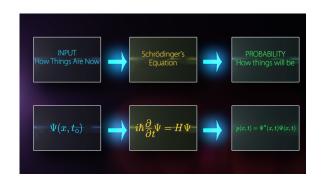
• Why don't they collapse?

ullet e⁻ degeneracy pressure: $P_{nrel} \propto
ho^{5/3}$, $P_{rel} \propto
ho^{4/3}$

Essence of Quantum Mechanics

 Heisenberg Uncertainty Principle

Pauli Exclusion Principle



• Planck's Constant: $h \approx 10^{-34} \text{ J s or } \hbar \equiv h/(2\pi) \text{ J s}$

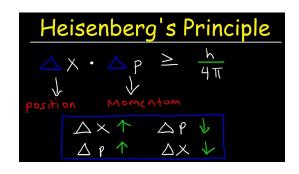
"Basic" Quantum: Heisenberg's Uncertainty

• $\Delta x \Delta p \geq \hbar/2$

• $\Delta t \Delta E \geq \hbar/2$

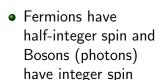
p is momentum

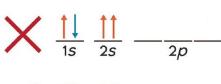
• *E* is energy



"Basic" Quantum: Pauli Exclusion

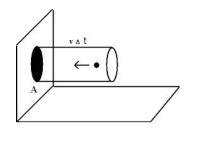
 No two fermions (protons, electrons, neutrons) can occupy the same quantum state

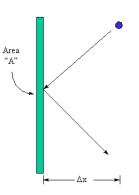






Remember What Pressure Is?





Newton: F = ma F = change in linear momentumper unit time $= \Delta p/\Delta t$

p = linear momentum

Before collision:

 $-p_x$, p_y , p_z

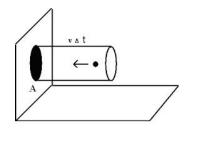
 $= m \times v$

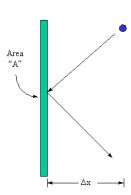
After collision: Px , Py , Pz

$$\Delta p = 2 p_x$$

 $\Delta t = 2 (\Delta x/v_x)$

Remember What Pressure Is?





Newton: F = maF = change in linear momentum

per unit time = $\Delta p/\Delta t$

p = linear momentum

= m x v Before collision:

 $-p_x$, p_y , p_z

After collision:

 p_x , p_y , p_z

$$\Delta p = 2 p_x$$

 $\Delta t = 2 (\Delta x / v_x)$

- $F = \Delta p/\Delta t = p_x v_x/\Delta x \& A = \Delta y \Delta z$
- \bullet $P = F/A = p_x v_x/V = p_x v_x n$

• Number density gives average separation: $\Delta x \approx n_e^{-1/3}$

- Number density gives average separation: $\Delta x \approx n_{\rm e}^{-1/3}$
- Uncertainty gives momentum: $p_x pprox \Delta p_x pprox rac{\hbar}{\Delta x} pprox \hbar n_e^{1/3}$

- Number density gives average separation: $\Delta x \approx n_e^{-1/3}$
- Uncertainty gives momentum: $p_{\scriptscriptstyle X} pprox \Delta p_{\scriptscriptstyle X} pprox rac{\hbar}{\Delta {\scriptscriptstyle X}} pprox \hbar n_{\scriptscriptstyle e}^{1/3}$
- Isotropic: $p^2 = p_x^2 + p_y^2 = p_z^2 = 3p_x^2$ $\Rightarrow p_x = p/\sqrt{3}$
- $P = n_e v_x p_x = n_e v p/3$

- Number density gives average separation: $\Delta x \approx n_{\rm e}^{-1/3}$
- Uncertainty gives momentum: $p_{\scriptscriptstyle X} pprox \Delta p_{\scriptscriptstyle X} pprox \frac{\hbar}{\Delta {\scriptscriptstyle X}} pprox \hbar n_{\scriptscriptstyle e}^{1/3}$
- Isotropic: $p^2 = p_x^2 + p_y^2 = p_z^2 = 3p_x^2$ $\Rightarrow p_x = p/\sqrt{3}$
- $P = n_e v_x p_x = n_e v p/3$
- Electrons: $p_x = m_e v_x$ \Rightarrow $v_x = p_x/m_e$
- $P \approx \frac{n_e}{m_e} p_x^2$

- Number density gives average separation: $\Delta x \approx n_e^{-1/3}$
- Uncertainty gives momentum: $p_{\scriptscriptstyle X} pprox \Delta p_{\scriptscriptstyle X} pprox rac{\hbar}{\Delta {\scriptscriptstyle X}} pprox \hbar n_{\scriptscriptstyle e}^{1/3}$
- Isotropic: $p^2 = p_x^2 + p_y^2 = p_z^2 = 3p_x^2$ $\Rightarrow p_x = p/\sqrt{3}$
- $P = n_e v_x p_x = n_e v p/3$
- Electrons: $p_x = m_e v_x$ \Rightarrow $v_x = p_x/m_e$
- $P \approx \frac{n_e}{m_e} p_x^2$
- $P \approx \frac{\hbar^2}{m_e} n_e^{5/3} = \frac{\hbar^2}{m_e} \left(\frac{Z}{A} \frac{\rho}{m_H} \right)^{5/3}$ independent of T!
- $n_e = \left(\frac{\# e^-}{\text{nucleon}}\right) \left(\frac{\# \text{ nucleons}}{\text{vol}}\right) = \frac{Z}{A} \frac{\rho}{m_H}$

Mass-Radius Relationship

•
$$P \approx \frac{\hbar^2}{m_e} \left(\frac{Z}{A} \frac{\rho}{m_H} \right)^{5/3}$$
 independent of $T!$

• What happens if we set this equal to the central *P*?

Mass-Radius Relationship

•
$$P \approx \frac{\hbar^2}{m_e} \left(\frac{Z}{A} \frac{\rho}{m_H} \right)^{5/3}$$
 independent of $T!$

- What happens if we set this equal to the central *P*?
- $dP/dr = -\rho g$

Mass-Radius Relationship

- $P \approx \frac{\hbar^2}{m_e} \left(\frac{Z}{A} \frac{\rho}{m_H} \right)^{5/3}$ independent of T!
- What happens if we set this equal to the central P?
- $dP/dr = -\rho g$
- $dP/dr \approx P_c/R = \rho g = \frac{3M}{4\pi R^3} \frac{GM}{R^2}$ \Rightarrow $P_c = \frac{3GM^2}{4\pi R^4}$
- $\bullet \ \frac{\hbar^2}{m_e} \left(\frac{Z}{m_H A} \frac{3M}{4\pi R^3} \right)^{5/3} = \frac{3GM^2}{4\pi R^4}$
- $MR^3 = \text{Const}$, as M increases, R decreases

•
$$P \approx \frac{\hbar^2}{m_e} \left(\frac{Z}{A} \frac{\rho}{m_H} \right)^{5/3} \qquad MR^3 = C$$

• Does this work for a really small radius star?

•
$$P \approx \frac{\hbar^2}{m_e} \left(\frac{Z}{A} \frac{\rho}{m_H} \right)^{5/3} \qquad MR^3 = C$$

- Does this work for a really small radius star?
- Uncertainty: $\Delta x \Delta p \approx \hbar$
- Small R: e⁻ confined to small space $\Rightarrow \Delta x \downarrow$, $\Delta p \uparrow$
- Velocity grows until $v \sim c$, relativity!

•
$$P \approx \frac{\hbar^2}{m_e} \left(\frac{Z}{A} \frac{\rho}{m_H} \right)^{5/3} \qquad MR^3 = C$$

- Does this work for a really small radius star?
- Uncertainty: $\Delta x \Delta p \approx \hbar$
- Small R: e⁻ confined to small space $\Rightarrow \Delta x \downarrow$, $\Delta p \uparrow$
- Velocity grows until $v \sim c$, relativity!
- $P \approx \hbar c \left(\frac{Z}{A} \frac{\rho}{m_H}\right)^{4/3}$

•
$$P \approx \frac{\hbar^2}{m_e} \left(\frac{Z}{A} \frac{\rho}{m_H} \right)^{5/3} \qquad MR^3 = C$$

- Does this work for a really small radius star?
- Uncertainty: $\Delta x \Delta p \approx \hbar$
- Small R: e⁻ confined to small space $\Rightarrow \Delta x \downarrow$, $\Delta p \uparrow$
- Velocity grows until $v \sim c$, relativity!
- $P \approx \hbar c \left(\frac{Z}{A} \frac{\rho}{m_H}\right)^{4/3}$
- Mass-Radius relationship: $M = \mathrm{Const} \approx 1.44 M_{\odot}$

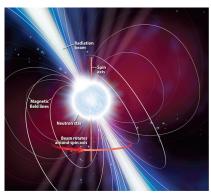
Neutron Stars

- White dwarf passes Chandrasekhar limit
- Pressure loses, gravity wins
- Force nuclei and electrons to undergo "K-capture"

$$ullet$$
 p + e $^
ightarrow$ n + u_e

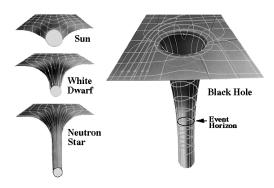
- Composed of almost entirely neutrons
- What holds them up against gravity?

Pulsars



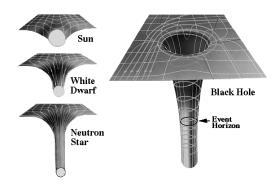
- Requires rotation & magnetic fields
- All pulsars are NS, not all NS are pulsars

Black Holes



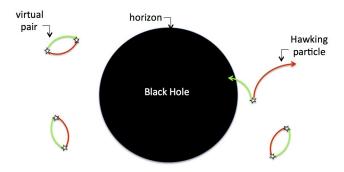
- Mass/energy makes spacetime curve
- Curved spacetime tells mass/energy how to move

Black Holes



- Mass/energy makes spacetime curve
- Curved spacetime tells mass/energy how to move
- Schwarzschild radius: $r_s = \frac{2GM}{c^2}$ (actually $C/2\pi$)
- Mass, Angular momentum, & Charge

- Uncertainty: $\Delta t \Delta E \geq \hbar/2$
- Produce 2 particles of total energy ΔE , but only live Δt
- What if this occurs near r_s ? One escapes, one falls in



 As seen by an observer far away, particle Bob fell in and particle Alice escaped

- As seen by an observer far away, particle Bob fell in and particle Alice escaped
- Alice escaped and is real with E > 0

- As seen by an observer far away, particle Bob fell in and particle Alice escaped
- Alice escaped and is real with E > 0
- ullet Bob is on a bound orbit with the BH, i.e., E < 0

- As seen by an observer far away, particle Bob fell in and particle Alice escaped
- Alice escaped and is real with E > 0
- ullet Bob is on a bound orbit with the BH, i.e., E < 0
- BH swallowed a particle with $E < 0 \iff m < 0$
- Observer measures mass decrease, BH eventually evaporates
- $ullet t_{
 m evap} pprox 2 imes 10^{67} \left(rac{\it M}{\it M_{\odot}}
 ight)^3 {
 m yrs}$

Practice Problem: Lifetime of Pulsars

Consider a rotating neutron star with $M=2M_{\odot}$, radius R=15 km, a period of P=0.1 sec, and a rate of change in period $dP/dt \equiv \dot{P}=3\times 10^{-6}$ sec/yr.

$$K=rac{1}{2}I\omega^2 \qquad \omega=rac{2\pi}{P} \qquad I=rac{2}{5}MR^2 \qquad M_\odot=2 imes10^{30}~{
m kg}$$

- What is the kinetic energy of the neutron star?
- What is the rate at which kinetic energy changes?
- What is the lifetime of the neutron star?

Practice Problem: Lifetime of Pulsars

Consider a rotating neutron star with $M=2M_{\odot}$, radius R=15 km, a period of P=0.1 sec, and a rate of change in period $dP/dt \equiv \dot{P}=3\times 10^{-6}$ sec/yr.

$$K=rac{1}{2}I\omega^2 \qquad \omega=rac{2\pi}{P} \qquad I=rac{2}{5}MR^2 \qquad M_{\odot}=2 imes10^{30}~{
m kg}$$

- What is the kinetic energy? $K = 7.1 \times 10^{41} \text{ J}$
- Rate of change in KE? $dK/dt = I\omega\dot{\omega} = -1.4 \times 10^{30} \text{ J/s}$ $\dot{\omega} = \frac{d}{dt}\frac{2\pi}{P} = -\frac{2\pi}{P^2}\dot{P} = -\omega\frac{\dot{P}}{P}$
- Lifetime? $au = \frac{\kappa}{d\kappa/dt} = 5.3 \times 10^{11} \ \mathrm{s} = 1.7 \times 10^4 \ \mathrm{yrs}$