ASTR 1040 Recitation: Telescopes and Special Relativity

Ryan Orvedahl

Department of Astrophysical and Planetary Sciences

February 5 & 6, 2019

Announcements

• Next Observing: Thurs, Feb 7 (8pm or 9pm at SBO)

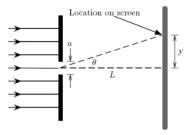
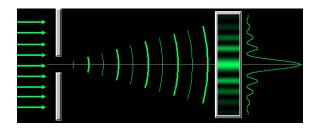
Next week is at Fiske, Tues/Wed Feb 12/13

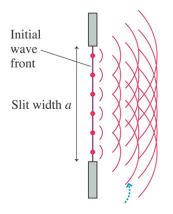
Optional review session: Wed, Feb 13 6-8pm, G126

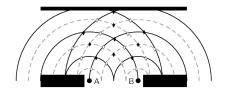
• Midterm 1: Thurs, Feb 14 in class

Single Slit Diffraction

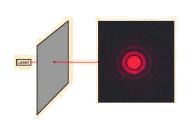
Shine light through a small hole, what do you see?

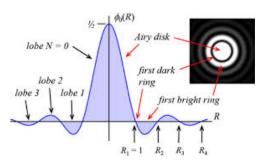




Figure 3: A schematic diagram for the light diffraction setup.


Single Slit Diffraction

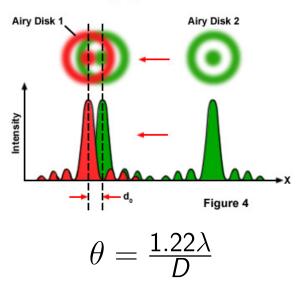
Many maxima/minima, with a central maximum


Wave Fronts



What About Circular Openings?

What About Circular Openings?


Diffraction Limit

Resolved when first minima lines up with central maxima

Diffraction Limit

The Rayleigh Criterion

Special Relativity

Speed of light is the same for all observers

Laws of physics are the same for all observers

Newton vs Einstein

Frame S' moves in the x direction with velocity u

$$\bullet x' = x - \mu t$$

•
$$y' = y$$

$$z' = z$$

•
$$t' = t$$

Newton vs Einstein

Frame S' moves in the x direction with velocity u

•
$$x' = x - \mu t$$

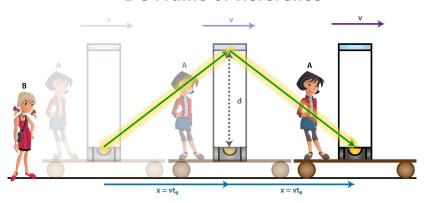
•
$$x' = \gamma x - \gamma ut$$

•
$$y' = y$$

$$y' = y$$

$$\bullet z' = z$$

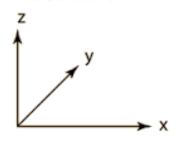
$$\bullet$$
 $z'=z$

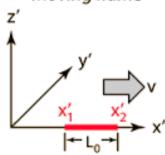

$$\bullet$$
 $t'=t$

•
$$t' = \gamma t - \gamma u x/c^2$$

$$\gamma = \frac{1}{\sqrt{1 - u^2/c^2}}$$

Time Dilation


B's Frame of Reference


$$\Delta t_{\text{moving}} = \gamma \Delta t_{\text{rest}}$$

Length Contraction

Fixed frame

Moving frame

$$x' = \gamma x - \gamma ut$$

Two light bulbs go off at the same time, in different locations. What does a moving observer see (S' frame)?

Two light bulbs go off at the same time, in different locations. What does a moving observer see (S' frame)?

•
$$t' = \gamma t - \gamma ux/c^2$$

•
$$t_2' - t_1' = \gamma (t_2 - t_1) - \gamma u (x_2 - x_1) / c^2$$

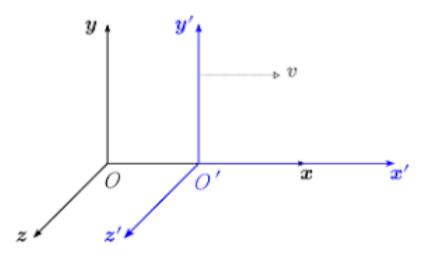
Two light bulbs go off at the same time, in different locations. What does a moving observer see (S' frame)?

•
$$t' = \gamma t - \gamma ux/c^2$$

•
$$t_2' - t_1' = \gamma (t_2 - t_1) - \gamma u (x_2 - x_1) / c^2$$

•
$$t_2' - t_1' = -\gamma u (x_2 - x_1) / c^2$$

Two light bulbs go off at the same time, in different locations. What does a moving observer see (S' frame)?


•
$$t' = \gamma t - \gamma u x/c^2$$

•
$$t_2' - t_1' = \gamma (t_2 - t_1) - \gamma u (x_2 - x_1) / c^2$$

•
$$t_2' - t_1' = -\gamma u (x_2 - x_1)/c^2$$

Events that are simultaneous for one observer are not simultaneous for all observers!

Frames of Reference

What happens if S' and S swap roles? Can we derive the "inverse" transforms without any math?

Practice Problem: Velocity Transforms

What are the S' velocity components (v_x', v_y') in terms of the S velocity components (v_x, v_y, v_z) ? Frame S' moves with respect to S at velocity u.

•
$$x' = \gamma x - \gamma ut$$

$$v' = v$$

$$\bullet$$
 $z'=z$

•
$$t' = \gamma t - \gamma u x/c^2$$

•
$$v_x' = ?$$

•
$$v'_y = ?$$

•
$$v'_z = v_z / [\gamma (1 - uv_x / c^2)]$$

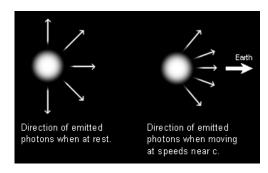
Practice Problem: Doppler Beaming

Consider a light ray with velocity components in S' of $v_x'=0$, $v_y'=c$, and $v_z'=0$. What is the ratio of v_y/v in the S frame? Sketch the velocity in the S' and S frames.

$$\bullet \ v_x' = \frac{v_x - u}{1 - u v_x/c^2}$$

•
$$v_y' = \frac{v_y \sqrt{1 - u^2/c^2}}{1 - u v_x/c^2}$$

•
$$v'_z = \frac{v_z \sqrt{1 - u^2/c^2}}{1 - u v_x/c^2}$$


Practice Problem: Doppler Beaming

Consider a light ray with velocity components in S' of $v_x'=0$, $v_y'=c$, and $v_z'=0$. What is the ratio of v_y/v in the S frame? Sketch the velocity in the S' and S frames.

$$v_x' = \frac{v_x - u}{1 - u v_x / c^2}$$

•
$$v_y' = \frac{v_y \sqrt{1 - u^2/c^2}}{1 - u v_x/c^2}$$

•
$$v_z' = \frac{v_z \sqrt{1 - u^2/c^2}}{1 - u v_x/c^2}$$

$$\sin\theta = v_y/v = 1/\gamma$$