ASTR 1040 Recitation: Binary Systems

Ryan Orvedahl

Department of Astrophysical and Planetary Sciences

January 22 & 23, 2019

Announcements

• Night Observing: Tues, Jan 22 (8pm or 9pm at SBO)

• Math Help Session: Wed, Jan 23 (6-8pm Duane G-126)

 Last Day to Drop without tuition/fee charges and a W grade: Jan 30

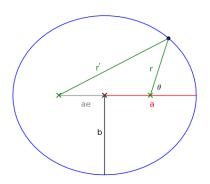
My Office hours changed: Tu 2-4pm

• Bound orbits are elliptical, center of mass at foci

• Bound orbits are elliptical, center of mass at foci

Equal areas in equal time

• Bound orbits are elliptical, center of mass at foci


Equal areas in equal time

$$\bullet \ 4\pi^2 a^3 = G (m_1 + m_2) T^2$$

Visualizing the Second Law: Equal Areas

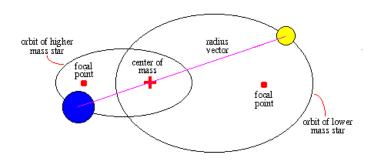
Visualizing the Third Law: $P^2 \sim a^3$

Ellipse Basics

 $e \equiv \text{Distance between foci} / \text{largest diameter}$

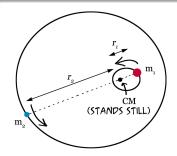
$$r + r' = 2a$$

 r_{max}, r_{min} ?


Eccentricity

Binary Circular Orbits

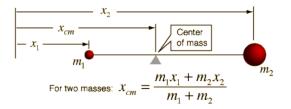
Binary Elliptical Orbits


Binary Orbits

Binary Star Orbit

Large star has a_1 , r_1 small star has a_2 , r_2 Same eccentricity, $e_1 = e_2 = e$

Center of Mass & Reduced Mass



- STANDS STILL $r = |r_2 r_1| \quad \text{CM}$
 - CENTER OF MASS-REDUCED MASS SYSTEM

- \bullet a_1 , a_2 , $r_1(t)$, $r_2(t)$
- $a_2/a_1 = r_2/r_1$

- ullet M stationary, μ moves
- single r(t), $a = a_1 + a_2$

Center of Mass & Reduced Mass

$$\frac{1}{\mu} \equiv \sum \frac{1}{m_i} = \frac{1}{m_1} + \frac{1}{m_2} + \dots$$

Practice Problem: Sun-Jupiter System

$$M_J=1.898\times 10^{27}$$
 kg, $M_\odot=1.989\times 10^{30}$ kg, $T=11.86$ yrs, $r_p=7.405\times 10^{11}$ m, $R_\odot=6.957\times 10^8$ m

- \bullet Total mass of the system, M_{tot}
- \bullet Reduced mass, μ
- Ratio of semi-major axes, a_J/a_{\odot} (1048)
- Semi-major axis of system, a (5.199 au)
- Semi-major axes, a_J , a_\odot (7.771 $imes 10^{11}$ m, 7.415 $imes 10^8$ m)
- Compare a_{\odot} to R_{\odot} , where is this point?
- Eccentricity, e (0.04796)