
ASTR 1040 Recitation:

Relativity Part II

Ryan Orvedahl

Department of Astrophysical and Planetary Sciences

February 24 & 26, 2014



This Week

Observing Session: Tues Feb 25 (7:30 pm)
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Today’s Schedule

Review a Few Relativity Topics

Event Horizons – Are They Real??

Satellite Corrections – Relativity of Everyday Life
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Time Dilation

Time Dilation from Special Relativity:

Moving clocks run
slow

t = γτp

γ = 1√
1− v2

c2
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Time Dilation

Time Dilation from General Relativity:

Clocks run slow in
gravitational fields

Light must use a little
energy to escape potential
well

Lose energy ⇒ lower
frequency

Think of frequency as
clock ticks
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Lensing

Matter tells space how to curve, curved space-time tells light
how to move
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Geometry of General Relativity

Geometry you didn’t learn in High School

Constant in any
reference frame:
ds2 = dx2 + dy 2 + dz2

Constant in any reference frame:
ds2 = −c2dt2 + dx2 + dy 2 + dz2

(FLAT Space ONLY)
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Proper Time

Proper Time: elapsed time between two events as measured
by a clock that passes through both events

Clock moves through both
events

Move to clock’s reference
frame

Events occur at same
place, separated in time
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Really Hard General Relativity: Metric

Flat Space:

ds2 = −c2dt2 + dx2 + dy 2 + dz2

ds2 = −c2dt2 + dr 2 + r 2dθ2 + r 2 sin2 θdφ2

Spherically symmetric matter distribution (Non-rotating,
empty space):

ds2 = −B(R)c2dt2 + dr2

B(R)
+ r 2dθ2 + r 2 sin2 θdφ2
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Proper Time Again

In clock’s frame, the events occur at same place

dr = dθ = dφ = 0 (equivalently: dx = dy = dz = 0)

The line elements reduce to:

ds2 = −c2dt2

This is a proper time so dt → dτ

ds2 = −c2dτ 2
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Event Horizons – Are They Real?

Schwarzschild Black Holes (Non-rotating, empty space):

B(R) = 1− 2GM
c2R

ds2 = −
(
1− 2GM

c2R

)
c2dt2 + dr2

1− 2GM
c2R

+ r 2dθ2 + r 2 sin2 θdφ2

If B(R) = 0, the dr coefficient →∞

Rsch = 2GM
c2
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Coordinate Singularities

Compare origin in Polar
and Cartesian Coordinates

Poles of sphere in
Spherical Coordinates

Origin of sphere in
Spherical Coordinates
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Event Horizons – Are They Real?

Event horizon is a coordinate singularity

Nothing special happens when you pass through it (not even
tidal forces)

What an observer sees as you pass through is a little different
Remember gravitational time dilation
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Weak Gravity
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Weak Gravity

Suppose gravitational potential is pretty small: GM/c2R ∼ ε

For example: Earth’s gravity

How does the line element change?

ds2 = −
(
1− 2GM

c2R

)
c2dt2 + dr2

1− 2GM
c2R

+ r 2dθ2 + r 2 sin2 θdφ2

Ans: Taylor expand in GM/c2R
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Weak Gravity

Weak gravity line element:

ds2 = −
(
1− 2GM

c2R

)
c2dt2 +(1+ 2GM

c2R
)dr 2 + r 2dθ2 + r 2 sin2 θdφ2

Valid for the Earth, Sun, Stars

Not valid for dense objects: Neutron Stars, Black Holes, White
Dwarfs (maybe)

R. Orvedahl (CU Boulder) Relativity Feb 24 & 26 16 / 19



Relativity – An Applied Approach

Relativistic corrections to satellites

General approach:

Calculate proper time of satellite in circular orbit with
respect to a person at rest at ∞

Calculate proper time of person on the poles of the Earth
(why use the poles and not Boulder?)

Compare the two results
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Satellite Corrections

Φ ≡ −GM
R

and Φ⊕ ≡ −GM⊕
c2R⊕

≈ −21.9 ms/yr

Proper time of satellite in circular orbit:

dτsat
dt

= 1 + Φ
c2 − v2

2c2

Proper time of person on poles of the Earth:

dτperson
dt

= 1 + Φ⊕

Compare the two:

dτsat
dt
− dτperson

dt
= Φ

c2 − Φ⊕ − v2

2c2
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Satellite Corrections

dτsat
dt
− dτperson

dt
= Φ

c2 − Φ⊕ − v2

2c2

dτsat
dt
− dτperson

dt
= −Φ⊕

(
−R⊕

2R
+ 1− R⊕

R

)
dτsat
dt
− dτperson

dt
= −Φ⊕(CSR + CGR) = fSR + fGR

Real numbers:

ISS: R ∼ 6800 km, v ∼ 7.66 km/s

fSR ∼ −10.3 ms/yr, fGR ∼ 1.35 ms/yr ⇒ −8.95 ms/yr

GPS: R ∼ 2.66× 107 m, v ∼ 3.89 km/s

fSR ∼ −2.65 ms/yr, fGR ∼ 16.7 ms/yr ⇒ +14.05 ms/yr
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